Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 15(689): eabq8513, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36989375

RESUMO

Although the overall survival rate of B cell acute lymphoblastic leukemia (B-ALL) in childhood is more than 80%, it is merely 30% in refractory/relapsed and adult patients with B-ALL. This demonstrates a need for improved therapy targeting this subgroup of B-ALL. Here, we show that the ten-eleven translocation 1 (TET1) protein, a dioxygenase involved in DNA demethylation, is overexpressed and plays a crucial oncogenic role independent of its catalytic activity in B-ALL. Consistent with its oncogenic role in B-ALL, overexpression of TET1 alone in normal precursor B cells is sufficient to transform the cells and cause B-ALL in mice within 3 to 4 months. We found that TET1 protein is stabilized and overexpressed because of its phosphorylation mediated by protein kinase C epsilon (PRKCE) and ATM serine/threonine kinase (ATM), which are also overexpressed in B-ALL. Mechanistically, TET1 recruits STAT5B to the promoters of CD72 and JCHAIN and promotes their transcription, which in turn promotes B-ALL development. Destabilization of TET1 protein by treatment with PKC or ATM inhibitors (staurosporine or AZD0156; both tested in clinical trials), or by pharmacological targeting of STAT5B, greatly decreases B-ALL cell viability and inhibits B-ALL progression in vitro and in vivo. The combination of AZD0156 with staurosporine or vincristine exhibits a synergistic effect on inhibition of refractory/relapsed B-ALL cell survival and leukemia progression in PDX models. Collectively, our study reveals an oncogenic role of the phosphorylated TET1 protein in B-ALL independent of its catalytic activity and highlights the therapeutic potential of targeting TET1 signaling for the treatment of refractory/relapsed B-ALL.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteínas Proto-Oncogênicas , Animais , Camundongos , Proteínas Proto-Oncogênicas/metabolismo , Fosforilação , Estaurosporina , Transdução de Sinais , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Proteínas de Ligação a DNA/metabolismo
2.
Cancer Cell ; 40(12): 1566-1582.e10, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36306790

RESUMO

N6-Methyladenosine (m6A) modification and its modulators play critical roles and show promise as therapeutic targets in human cancers, including acute myeloid leukemia (AML). IGF2BP2 was recently reported as an m6A binding protein that enhances mRNA stability and translation. However, its function in AML remains largely elusive. Here we report the oncogenic role and the therapeutic targeting of IGF2BP2 in AML. High expression of IGF2BP2 is observed in AML and associates with unfavorable prognosis. IGF2BP2 promotes AML development and self-renewal of leukemia stem/initiation cells by regulating expression of critical targets (e.g., MYC, GPT2, and SLC1A5) in the glutamine metabolism pathways in an m6A-dependent manner. Inhibiting IGF2BP2 with our recently identified small-molecule compound (CWI1-2) shows promising anti-leukemia effects in vitro and in vivo. Collectively, our results reveal a role of IGF2BP2 and m6A modification in amino acid metabolism and highlight the potential of targeting IGF2BP2 as a promising therapeutic strategy in AML.


Assuntos
Glutamina , Leucemia Mieloide Aguda , Humanos , Glutamina/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Estabilidade de RNA , Prognóstico , Antígenos de Histocompatibilidade Menor , Sistema ASC de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
3.
Theranostics ; 12(13): 5727-5743, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966596

RESUMO

RNA N6 -methyladenosine (m6A) modification and its regulators fine tune gene expression and contribute to tumorigenesis. This study aims to uncover the essential role and the underlying molecular mechanism(s) of the m6A reader YTHDC1 in promoting triple negative breast cancer (TNBC) metastasis. METHODS: In vitro and in vivo models were employed to determine the pathological function of YTHDC1 in TNBC metastasis. To identify bona fide YTHDC1 target RNAs, we conducted RNA-seq, m6A-seq, and RIP-seq, followed by integrative data analysis and validation assays. RESULTS: By analyzing The Cancer Genome Atlas (TCGA) dataset, we found that elevated expression of YTHDC1 is positively correlated with poor prognosis in breast cancer patients. Using a mammary fat pad mouse model of TNBC, YTHDC1 significantly promoted lung metastasis of TNBC cells. Through multiple transcriptome-wide sequencing and integrative data analysis, we revealed dysregulation of metastasis-related pathways following YTHDC1 depletion and identified SMAD3 as a bona fide YTHDC1 target RNA. Depletion of YTHDC1 caused nuclear retention of SMAD3 mRNA, leading to lower SMAD3 protein levels. Loss of YTHDC1 led to impaired TGF-ß-induced gene expression, leading to inhibition of epithelial-mesenchymal transition (EMT) and suppressed TNBC cell migration and invasion. SMAD3 overexpression was able to restore the response to TGF-ß in YTHDC1 depleted TNBC cells. Furthermore, we demonstrated that the oncogenic role of YTHDC1 is mediated through its recognition of m6A as m6A-binding defective mutants of YTHDC1 were unable to rescue the impaired cell migration and invasion of YTHDC1 knockout TNBC cells. CONCLUSIONS: We show that YTHDC1 plays a critical oncogenic role in TNBC metastasis through promoting the nuclear export and expression of SMAD3 to augment the TGF-ß signaling cascade. Overall, our study demonstrates that YTHDC1 is vital for TNBC progression by enhancing TNBC cell survival and TGF-ß-mediated EMT via SMAD3 to enable the formation of distant metastasis and highlights the therapeutic potential of targeting the YTHDC1/m6A/SMAD3 axis for TNBC treatment.


Assuntos
Neoplasias de Mama Triplo Negativas , Animais , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Humanos , Camundongos , Proteínas do Tecido Nervoso/metabolismo , RNA , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
4.
Nat Cell Biol ; 24(2): 205-216, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35145225

RESUMO

METTL16 has recently been identified as an RNA methyltransferase responsible for the deposition of N6-methyladenosine (m6A) in a few transcripts. Whether METTL16 methylates a large set of transcripts, similar to METTL3 and METTL14, remains unclear. Here we show that METTL16 exerts both methyltransferase activity-dependent and -independent functions in gene regulation. In the cell nucleus, METTL16 functions as an m6A writer to deposit m6A into hundreds of its specific messenger RNA targets. In the cytosol, METTL16 promotes translation in an m6A-independent manner. More specifically, METTL16 directly interacts with the eukaryotic initiation factors 3a and -b as well as ribosomal RNA through its Mtase domain, thereby facilitating the assembly of the translation-initiation complex and promoting the translation of over 4,000 mRNA transcripts. Moreover, we demonstrate that METTL16 is critical for the tumorigenesis of hepatocellular carcinoma. Collectively, our studies reveal previously unappreciated dual functions of METTL16 as an m6A writer and a translation-initiation facilitator, which together contribute to its essential function in tumorigenesis.


Assuntos
Adenosina/análogos & derivados , Carcinogênese/metabolismo , Carcinoma Hepatocelular/enzimologia , Neoplasias Hepáticas/enzimologia , Metiltransferases/metabolismo , Biossíntese de Proteínas , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Adenosina/metabolismo , Animais , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Citosol/enzimologia , Fator de Iniciação 3 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Metiltransferases/genética , Camundongos Endogâmicos NOD , Camundongos SCID , RNA Mensageiro/genética , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Transdução de Sinais , Carga Tumoral
5.
JCO Precis Oncol ; 5: 953-973, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34136742

RESUMO

Four programmed death ligand 1 (PD-L1) immunohistochemistry assays (28-8, 22C3, SP263, and SP142) have been approved for use by the US Food and Drug Administration (FDA). Analytical concordance between these assays has been evaluated in multiple studies. This systematic review included studies that investigated the analytical concordance of immunohistochemistry assays utilizing two or more PD-L1 antibodies from FDA-approved diagnostics for evaluation of PD-L1 expression on tumor or immune cells across a range of tumor types and algorithms. METHODS: Literature searches were conducted in MEDLINE (via PubMed) and EMBASE to identify studies published between January 1, 2010, and March 31, 2019, that evaluated analytical concordance between two or more assays based on antibodies from FDA-approved assays. Proceedings of key oncology and pathology congresses that took place between January 2016 and March 2019 were searched for abstracts of studies evaluating PD-L1 assay concordance. RESULTS: A total of 42 studies across a range of tumor types met the selection criteria. Concordance between 28-8-, 22C3-, and SP263-based assays in lung cancer, urothelial carcinoma, and squamous cell carcinoma of the head and neck was high when used to assess PD-L1 expression on tumor cells (TCs). SP142-based assays had overall low concordance with other approved assays when used to assess PD-L1 expression on TCs. Analytical concordance for assessment of PD-L1 expression on immune cells was variable and generally lower than for PD-L1 expression on TCs. CONCLUSION: A large body of evidence supports the potential interchangeability of 28-8-, 22C3-, and SP263-based assays for the assessment of PD-L1 expression on TCs in lung cancer. Further studies are required in tumor types for which less evidence is available.


Assuntos
Anticorpos/análise , Antígeno B7-H1/imunologia , Neoplasias/diagnóstico , Neoplasias/imunologia , Humanos , Imuno-Histoquímica , Estadiamento de Neoplasias , Estados Unidos , United States Food and Drug Administration
6.
Mol Cell ; 81(5): 922-939.e9, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33434505

RESUMO

R-2-hydroxyglutarate (R-2HG), a metabolite produced by mutant isocitrate dehydrogenases (IDHs), was recently reported to exhibit anti-tumor activity. However, its effect on cancer metabolism remains largely elusive. Here we show that R-2HG effectively attenuates aerobic glycolysis, a hallmark of cancer metabolism, in (R-2HG-sensitive) leukemia cells. Mechanistically, R-2HG abrogates fat-mass- and obesity-associated protein (FTO)/N6-methyladenosine (m6A)/YTH N6-methyladenosine RNA binding protein 2 (YTHDF2)-mediated post-transcriptional upregulation of phosphofructokinase platelet (PFKP) and lactate dehydrogenase B (LDHB) (two critical glycolytic genes) expression and thereby suppresses aerobic glycolysis. Knockdown of FTO, PFKP, or LDHB recapitulates R-2HG-induced glycolytic inhibition in (R-2HG-sensitive) leukemia cells, but not in normal CD34+ hematopoietic stem/progenitor cells, and inhibits leukemogenesis in vivo; conversely, their overexpression reverses R-2HG-induced effects. R-2HG also suppresses glycolysis and downregulates FTO/PFKP/LDHB expression in human primary IDH-wild-type acute myeloid leukemia (AML) cells, demonstrating the clinical relevance. Collectively, our study reveals previously unrecognized effects of R-2HG and RNA modification on aerobic glycolysis in leukemia, highlighting the therapeutic potential of targeting cancer epitranscriptomics and metabolism.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Antineoplásicos/farmacologia , Glutaratos/farmacologia , Glicólise/genética , Lactato Desidrogenases/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Fosfofrutoquinase-1 Tipo C/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/antagonistas & inibidores , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica , Glicólise/efeitos dos fármacos , Células HEK293 , Humanos , Células K562 , Lactato Desidrogenases/antagonistas & inibidores , Lactato Desidrogenases/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação Oxidativa/efeitos dos fármacos , Fosfofrutoquinase-1 Tipo C/antagonistas & inibidores , Fosfofrutoquinase-1 Tipo C/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Cancer Cell ; 38(1): 79-96.e11, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32531268

RESUMO

Fat mass and obesity-associated protein (FTO), an RNA N6-methyladenosine (m6A) demethylase, plays oncogenic roles in various cancers, presenting an opportunity for the development of effective targeted therapeutics. Here, we report two potent small-molecule FTO inhibitors that exhibit strong anti-tumor effects in multiple types of cancers. We show that genetic depletion and pharmacological inhibition of FTO dramatically attenuate leukemia stem/initiating cell self-renewal and reprogram immune response by suppressing expression of immune checkpoint genes, especially LILRB4. FTO inhibition sensitizes leukemia cells to T cell cytotoxicity and overcomes hypomethylating agent-induced immune evasion. Our study demonstrates that FTO plays critical roles in cancer stem cell self-renewal and immune evasion and highlights the broad potential of targeting FTO for cancer therapy.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/antagonistas & inibidores , Autorrenovação Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Evasão da Resposta Imune/efeitos dos fármacos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/química , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Antracenos/química , Antracenos/farmacologia , Compostos de Bifenilo/química , Compostos de Bifenilo/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Evasão da Resposta Imune/genética , Leucemia/genética , Leucemia/patologia , Leucemia/prevenção & controle , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Estrutura Molecular , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Células U937
8.
J Clin Pathol ; 73(10): 656-664, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32591352

RESUMO

AIMS: Programmed death-1/programmed death ligand 1 (PD-1/PD-L1) inhibitor therapy is accompanied by companion or complementary PD-L1 testing in some tumour types. We investigated utilisation of the Dako PD-L1 IHC 28-8 and 22C3 pharmDx assays and the Ventana PD-L1 (SP142) assay and evaluated concordance between the 28-8 and 22C3 assays in a real-world cohort of patients tested at a single US national reference laboratory. METHODS: NeoGenomics Laboratories performed PD-L1 testing on tumour samples between October 2015 and March 2018. PD-L1 test results were matched with patient characteristics using unique identifiers. Concordance between the 28-8 and 22C3 assays was evaluated in matched tumour samples. Data were evaluated across multiple tumour types and in subgroups of patients with lung cancer, melanoma, squamous cell carcinoma of the head and neck, and urothelial carcinoma. RESULTS: 62 180 individual PD-L1 tests were conducted on samples from 55 652 patients. PD-L1 test volume increased ~10-fold over the period evaluated. Test failure rates were typically low, and test turnaround time (TAT) ranged between 2 and 4 days. Concordance between the 28-8 and 22C3 assays was strong in the overall population and across tumour type subgroups (Kendall's tau correlations of 0.94 and 0.92-0.98, respectively). CONCLUSIONS: Test failure rates for PD-L1 tests were low and TAT remained reasonable despite marked increases in test volume. Concordance was high between the 28-8 and 22C3 assays across a range of tumour types and biopsy locations. These findings add to the literature showing high concordance between the 28-8 and 22C3 assays.


Assuntos
Antígeno B7-H1/análise , Biomarcadores Tumorais/análise , Imuno-Histoquímica , Humanos , Imuno-Histoquímica/métodos , Imuno-Histoquímica/normas , Imuno-Histoquímica/estatística & dados numéricos , Neoplasias/metabolismo , Reprodutibilidade dos Testes
9.
Cell Stem Cell ; 27(1): 64-80.e9, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32402250

RESUMO

N6-methyladenosine (m6A), the most abundant internal modification in mRNA, has been implicated in tumorigenesis. As an m6A demethylase, ALKBH5 has been shown to promote the development of breast cancer and brain tumors. However, in acute myeloid leukemia (AML), ALKBH5 was reported to be frequently deleted, implying a tumor-suppressor role. Here, we show that ALKBH5 deletion is rare in human AML; instead, ALKBH5 is aberrantly overexpressed in AML. Moreover, its increased expression correlates with poor prognosis in AML patients. We demonstrate that ALKBH5 is required for the development and maintenance of AML and self-renewal of leukemia stem/initiating cells (LSCs/LICs) but not essential for normal hematopoiesis. Mechanistically, ALKBH5 exerts tumor-promoting effects in AML by post-transcriptional regulation of its critical targets such as TACC3, a prognosis-associated oncogene in various cancers. Collectively, our findings reveal crucial functions of ALKBH5 in leukemogenesis and LSC/LIC self-renewal/maintenance and highlight the therapeutic potential of targeting the ALKBH5/m6A axis.


Assuntos
Autorrenovação Celular , Leucemia Mieloide Aguda , Homólogo AlkB 5 da RNA Desmetilase/genética , Carcinogênese/genética , Humanos , Leucemia Mieloide Aguda/genética , Proteínas Associadas aos Microtúbulos , Células-Tronco Neoplásicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA